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Abstract

In this paper we introduce the notion of Coherent Risk Measures and the desir-
able mathematical properties that they satisfy. We focus on the Conditional VaR
(CVaR) and provide a framework for its estimation that is consistent with Ex-
treme Value Theory. We conclude by presenting the Entropic VaR (EVaR) as an
alternative risk measure that, while retaining coherency, is also computationally
tractable.

DISCLAIMER

This is an academic paper related to an academic project that does not represent
any investment recommendation nor solicitation to buy or sell securities. The
opinions expressed are subject to change. References to specific securities, asset
classes and financial markets are for illustrative purposes only and are not intended
to be interpreted as recommendations. Reliance upon information in this material
is at the sole risk and discretion of the reader. The material was prepared only in
regard to the research activity of Minerva Investment Management Society.
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1 Introduction
Risk measures are related to the quantification of the risk associated with a financial
position. To characterize such position, we rely on the corresponding payoff profile, rep-
resented by a real-valued random variable X belonging to a given class X of well-behaved
random variables defined over an appropriate probability space (Ω, F , P ).

Under a probabilistic model, the risk inherent in X can be assessed by considering sta-
tistical quantities like moments and quantiles of the probability distribution of scenarios.
However, straightforward metrics like variance fail to account for a fundamental asymme-
try in the financial interpretation of X, where the downside risk holds more significance.
This discrepancy is addressed by quantities that focus on the left tail of the payoff distri-
bution. Nonetheless, the widely known Value at Risk (VaR) falls short in meeting some
essential consistency criteria, motivating a more systematic exploration of risk measures
and their “desirable” properties.

If we adopt, for instance, the perspective of a regulatory agency a risk measure is treated
as a capital requirement, which determines the minimum amount of capital that, when
added to the financial position and invested risk-free, renders the position “acceptable”.
This monetary interpretation of the financial position is encapsulated by an additional
property known as translation (or cash) invariance. When combined with convexity and
monotonicity, this leads to the definition of coherent risk measures [3].

Coherent Risk Measure

Definition 1 A mapping ρ : X → R is called a coherent measure of risk if it
satisfies the following conditions for all X1, X2 ∈ X and for λ ∈ [0, 1]:

• Monotonicity: If X1 ≤ X2, then ρ(X1) ≤ ρ(X2)

• Translation Invariance: If m ∈ R, then ρ(X + m) = ρ(X) − m.

• Convexity: ρ(λX1 + (1 − λ)X2) ≤ λρ(X1) + (1 − λ)ρ(X2)

• Positive Homogeneity: ρ(λX) = λρ(X)

• Subadditivity: ρ(X1 + X2) ≤ ρ(X1) + ρ(X2)

Notably, a pivotal result in the field is that coherent risk measures admit a dual repre-
sentation and can be characterized as:

ρ(X) = sup
Q∈Q

EQ[X] (1)

where Q is some particular class of probability measures on the sample space, whose
representation is specific to each risk measure [6]. It is clear that, once having picked
a suitable member X ∈ X and if we prefer smaller values of X (e.g., if X represents a
distribution of losses), then we are interested in the following optimization problem to
make the selection:

min
X∈X

ρ(X). (2)

We will tackle again the problem in the section dedicated to EVaR.
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2 Conditional VaR

2.1 Overcoming VaR limitations
The Value at Risk (VaR) is a well known and widely implemented risk measure that
indicates the loss amount that is exceeded only with a small probability over the horizon
of interest (usually a day or a year). Formally, for a confidence level 1 − α the V aRα(X)
is the α-quantile of the payoff distribution for a financial position X, i.e.

V aRα(X) = inf
x∈R

{x : P (X ≤ x) ≥ 1 − α} (3)

As we have hinted to in the previous section, VaR is not a coherent risk measure. Indeed,
it lacks subadditivity, i.e. given two random variables X1 and X2 it is not generally
guaranteed that

V aR(X1 + X2) ≤ V aR(X1) + V aR(X2) (4)
Other shortcomings of the VaR are that, for non-normal distributions, working nu-
merically with the VaR is unstable and optimization becomes intractable in higher
dimensions. Moreover, from a risk management perspective, VaR does not control
scenarios and losses exceeding VaR itself.

The research for a more amenable risk measure lead to the definition of Conditional
Value at Risk (CVaR). The CVaR is also known in the financial milieu with the name
Expected Shortfall (ES): even if these two metrics do not exactly coincide, they both
refer to the expected size of a loss X exceeding the VaR, i.e.

ESα(X) = E[X|X > V aRα(X)] (5)

CV aRα(X) = 1
α

∫ α

0
V aRa(X) da (6)

For simplicity and with a slight abuse of notation we shall consider the two as equivalent.
As opposed to VaR, the CVaR is a coherent risk measure for general loss distribution
(see [10]). Moreover, [2] show that it admits the dual representation of Equation 1.

2.2 EVT modeling framework
In this section we outline a framework for the estimation of the CVaR of a financial
position that is consistent with Extreme Value Theory (EVT). Broadly spekaing, EVT is
a branch of statistics that deals with events that significantly deviate from the median of a
distribution. It provides a mathematically rigorous approach to estimate and extrapolate
the probability of extreme events that can be hardly observed in a dataset.

From a financial point of view, we restrict the analysis to market risk. The type of losses
we have in mind are those due to adverse market movements while holding a position
on a single or a portfolio of traded securities. From a modeling perspective it is also
convenient to leave aside the monetary dimension of X and to focus our attention on
(log) returns.
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In fact, the problem of computing the CVaR of a p&l with initial position W0 is equivalent
to finding the CVaR of the return r distribution, since the mapping r −→ X is both
continuous and strictly increasing:

X = W1 − W0 = W0(er − 1). (7)
EVT results are usually stated with the aim of modeling the maximum or the right tail
of a distribution. To adapt them to our setting we need to consider the distribution of
negative log-returns −r ≡ r and then translate our conclusions back to the original
distribution in a second moment.

In order to properly apply most of the statistical results in (univariate) EVT we need
to handle random variables that are approximately i.i.d. (see [5]). The assumption
of return i.i.d.ness can be particularly strong when modeling traded securities as it is
not consistent with many stylized facts (e.g. volatility clustering). Moreover, for risk
management purposes, it is useful to have some model to make good use of the information
we have and thus makes conditional forecasts rather than unconditional ones. These
considerations justify the assumption of a data generating process for the returns of
the form

rt+1|t = µt+1|t + σt+1|tZt+1 (8)

for t = 0, 1, ..., T , where µt+1|t and σt+1|t are some model specifications for the conditional
mean and volatility, respectively (e.g. ARMA-GARCH, see [8] for a more in depth de-
scription). If the other components have been correctly specified, we can assume the Zt

(commonly referred as shocks) to be i.i.d. from a generic standardised distribution F .

The useful reflection of 8 is that we can apply the EVT toolkit to the filtered residuals
to get an estimate of VaR and CVaR for the the returns:V aRα

t+1|t = µt+1|t + σt+1|tq
α(Z)

CV aRα
t+1|t = µt+1|t + σt+1|tCV aRα(Z)

(9)

for a given level α and qα(·) := inf{x : F (x) ≥ 1 − α} being the quantile function. It is
worth noticing that, due to i.i.d.ness, qα(Z) and CvaRα(Z) are not time-dependent.

The next step is where EVT comes into play. We adopt the Peaks Over Threshold
(POT) approach to model the exceedances above a threshold u ∈ R high enough, that is
we consider Z − u | Z > u with CDF

Fu(z) = P (Z − u ≤ z | Z > u) = F (z + u) − F (u)
1 − F (u) (10)

where Fu is also called excess distribution function.

In practical settings, however, the distribution Fu is unknown. We therefore advocate
for some limiting results that allow to approximate Fu with a known distribution G. A
central theorem in EVT from [4] and [9] offers a way out by specifying the functional
form of G as the threshold u approaches the right endpoint of the distribution z∗.

4



Pickands–Balkema–de Haan

Theorem 2.1 Let Fu be an excess distribution function for a threshold u, then
∀ξ ∈ R we have F ∈ D(G(ξ, β(u))) if and only if

lim
u→z∗

sup
0≤z≤z∗−u

|Fu(z) − G(z; ξ; β(u))| = 0 (11)

where D denotes the maximum domain of attraction and

G(z; ξ, β(u)) =
1 − (1 + ξ z

β(u))
− 1

ξ ξ ̸= 0
1 − exp(− z

β(u)) ξ = 0
(12)

is a Generalized Pareto distribution with scale β(u) > 0.

The Generalized Pareto distribution (GPD) subsumes other distributions under a com-
mon parametric form, where the parameter ξ influences the shape of the distribution. In
our setting, two cases are relevant:

• ξ > 0, which is indicative of heavy-tailed behavior and power law decay; F is said
to be in the domain of attraction of the Fréchet distribution,

• ξ = 0, which is typical of thin-tailed distributions and exponential decay; moreover
F is in the domain of attraction of the Gumbel distribution.

Under this framework we can approximate the CDF of Z with

F (z + u) = F (u) + (1 − F (u))F (z + u) − F (u)
1 − F (u)

≈ F (u) + (1 − F (u))
1 −

(
1 + ξ

z

β(u)

)− 1
ξ

 (13)

as long as u is high enough and for ξ ̸= 0.

Figure 1: GPD fitted to the upper tail of standardized residuals vs their empirical CDF.
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Equation 13 can be inverted to obtain closed-form expressions for both the VaR and the
CVaR for Z.

Closed-form expressions for V aRα(Z) and CV aRα(Z)

As u → z∗ and for 0 < ξ < 1,

V aRα(Z) = qα(Z) = u + β(u)
ξ

( α

1 − F (u)

)−ξ

− 1
 (14)

CV aRα(Z) = V aRα(Z)
1 − ξ

+ β(u) − ξu

1 − ξ
(15)

Similar expressions hold for ξ = 0. We can ultimately plug these equations in 9 to get a
conditional estimate for the VaR and CVaR of r given µt+1|t and σt+1|t.

2.3 Parameters estimation
Now that a framework has been set, we are left with the nontrivial task of estimating
the parameters of the GPD, namely ξ, β(u) and the CDF evaluated at the threshold
F (u). Here we briefly present the main approaches that can be followed, for an in depth
analysis of the estimation process the interested reader shall see [7].

Under the POT approach the k top order statistics are considered in the estimation
process, where k → ∞ as n → ∞ and k = o(n). The choice of k (known as effective
sample size) itself entails a bias-variance trade-off :

• A very high k and a low threshold increase the bias we get in the estimation of the
other parameters as the approximation in Theorem 2.1 becomes poorer,

• Low values of k and a higher threshold help containing the bias, but increase the
variance of our estimates as we are working with less observations.

Given k, a natural way to proceed is to set u equal to some value in the observed dataset,
usually the (n − k)th ordered statistic Xn−k and to estimate F (u) with the empirical
CDF F̂ (u). On the other hand, common methods to estimate ξ and β(u) include:

• Maximum Likelihood Estimation (MLE), which jointly estimates the two pa-
rameters by maximizing the log-likelihood of the observed exceedances under the
GPD approximation,

• Moment Estimator, which leads to non-parametric estimators for both ξ and
β(u); in the case of ξ the moment estimator is

ˆξM := M (1)
n + 1 − 1

2

1 −

(
M (1)

n

)2

M
(2)
n


−1

(16)

where M (j)
n is defined as

M (j)
n := 1

k

k−1∑
i=0

(log Xn−i − log Xn−k)j, (17)

6



• Bayesian approach, which is not restricted to a closed-form estimator but tries
to deliver the joint posterior distribution for ξ and β(u) while accounting for some
prior information.

As soon as we have a point estimate for ˆF (u), ξ̂ and ˆβ(u) we can plug everything back
in Equations 14 and 15 to get a point estimate for VaR and CVaR of Z.
Under second-order conditions outlined by [7], the MLE and Moment estimators can be
shown to be consistent and asymptotically normal, but still biased. These properties turn
out to be particularly useful in quantifying the uncertainty around our estimates as well
as in performing some sensitivity analysis w.r.t. the chosen threshold u (and k).

3 Entropic VaR
By following the seminal work [1], we introduce a recently developed coherent risk mea-
sure: the Entropic Value at Risk (EVaR).
EVaR appeared in the literature as an attempt to overcome the drawbacks of its popular
predecessors VaR and CVaR. In Section 2.1 we have shown that VaR lacks coherency and
it is computationally intractable when employed in optimization problems. In Section 2.2
we have outlined how the CVaR can be estimated for risk management purposes; how-
ever, also CVaR poses computational challenges when used in optimization, even in the
“simple” summation of independent random variables. Efficient computation of CVaR
is limited to a few specific cases, requiring approximation through sampling methods for
more complex scenarios. Having a risk measure that can be computed efficiently becomes
crucial when the dimensionality of the problem escalates quickly.

The EVaR is obtained as the tightest possible upper bound obtained from the Chernoff
inequality for the VaR

Pr(X ≥ a) ≤ e−zaMX(z) (18)
∀a ∈ R and ∀z > 0, where MX(z) = E[ezX ] is the moment-generating function of X.

Entropic VaR

Definition 2 The Entropic VaR of X with confidence level 1 − α is

EV aRα(X) = inf
z>0

{
1
z

ln
(

MX(z)
α

)}
(19)

It can be shown that the EV aRα is coherent for every α ∈ (0, 1] and admits the
dual representation EV aRα(X) = supQ∈Q EQ[X].

As an example, we can compare the closed formula expressions for VaR, CVaR, and EVaR
when X ∼ N (µ, σ2):

V aRα(X) = µ + z1−ασ, (20)

CV aRα(X) = µ + ϕ(z1−α)
α

σ, (21)

EV aRα(X) = µ +
√

−2 ln ασ (22)
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where ϕ(·) is the density function and z1−α is such that P (Z ≥ z1−α) = α.

Figure 2: VaR, CVaR and EVaR for normally distributed random variables.

We are now going to focus on the following proposition, which gives a characterization
of EVaR as an upper bound for both VaR and CVaR.

EVaR as an upper bound

Proposition 3.1 The EVaR is an upper bound for both the VaR and the CVaR
with the same confidence levels, i.e., for X and every α ∈ (0, 1]

V aRα(X) ≤ CV aRα(X) ≤ EV aRα(X) (23)

This proposition establishes that the EVaR exhibits a higher degree of risk aversion in
comparison to the CVaR when considering the same confidence level. Consequently, the
EVaR induces an allocation of resources more tilted towards risk mitigation. However,
this fact may not align with the preferences of companies aiming to minimize resource
allocation. This particular aspect diminishes the attractiveness of the EVaR for such
companies. Nonetheless, its most noteworthy attribute lies in its computational feasibility
for numerous scenarios where the CVaR faces challenges. In fact, when the incorporation
of a risk measure into a stochastic optimization problem is necessary, the computational
tractability of the EVaR becomes a vital consideration.

3.1 EVaR in optimization
In practical applications, composite random variables, denoted as X = H(w, Ψ), are
frequently employed. Here, w represents an n-dimensional real decision vector in W ⊆
Rn, Ψ is an m-dimensional real random vector with a known probability distribution, and
the function H(w, ·) : Rm → R is a measurable function for all w ∈ W. Consequently,
the original problem in 2 can be expressed as:

min
w∈W

ρ(H(w, Ψ)) (24)
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It can be shown that the minimization problem is a convex if the risk measure ρ is
coherent and if the function H(·, s) is convex for all s in SΨ, where SΨ represents the
support of the random vector Ψ, that is if the function is convex in the vector-values Ψ
can assume. If ρ is then taken to be the EVaR, the problem becomes:

min
w∈W,z>0

{
1
z

ln
(

MH(w,Ψ)(z)
α

)}
(25)

For instance, in a simple portfolio setting where the choice variable w represents the
individual securities’ weights, the random vector Ψ is the vector of random linear returns
R = er − 1 for each single security, and H(·, s) is the linear return of the portfolio, the
optimization problem employing EVaR as a risk measure becomes:

min
w∈W

{
EV aRα

(
n∑

i=1
wiRi

)}
(26)

where H(w, R) = ∑n
i=1 wiRi is clearly affine in R. In [1] it is also shown that H(·, s) is

convex for all s in SR.
The problem becomes computationally tractable if the objective function can be com-
puted efficiently, e.g., if MH(w,Ψ)(z) can be evaluated in polynomial time, but most im-
portantly it becomes entirely tractable if MH(w,Ψ)(z) is affine in Ψ.

Moreover, to give a concrete instance of the reduced computational complexity of the
problem we provide the proposition below, as seen in [1].

Computational complexity of EVaR (discrete case)

Proposition 3.2 Let Ψ1, . . . , Ψm be independent discrete random variables assum-
ing k distinct values, and H(w, Ψ) be affine in Ψ for all w ∈ W. For fixed w and
z, the computational complexity of the objective function in the minimization prob-
lem, when using EVaR, is a bilinear function of m and k (mk), while for CVaR,
it is of order km, growing exponentially with m and polynomially with k.

We conclude with a remark regarding the reason behind the adjective “entropic”. Until
now we have not specified what the class Q of probability measures in the dual represen-
tation looks like. [1] shows that, in the case of EVaR,

Q = {Q ≪ P : DKL(Q ∥ P ) ≤ − ln α}

where DKL(Q ∥ P ) is the Kullback–Leibler divergence from Q to P , or more distinctly,
the relative entropy of Q with respect to P . This divergence intuitively measures how
much the probability measure Q is different (“distant”) from the probability measure
P and is defined as the Q-expectation of the logarithmic difference between the two
measures:

DKL(Q ∥ P ) =
∫

Ω
ln
(

Q(dω)
P (dω)

)
Q(dω) (27)

where Q(dω)/P (dω) is the Radon-Nikodym derivative of Q with respect to P .
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